

Synthesis of 1-(methanesulfonyl- and aminosulfonylphenyl)acetylenes that possess a 2-(*N*-difluoromethyl-1,2-dihydropyridin-2-one) pharmacophore: Evaluation as dual inhibitors of cyclooxygenases and 5-lipoxygenase with anti-inflammatory activity

Morshed Alam Chowdhury, Khaled R. A. Abdellatif, Ying Dong, Moshfiqur Rahman, Dipankar Das, Mavanur R. Suresh, Edward E. Knaus *

Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alta., Canada T6G 2N8

ARTICLE INFO

Article history:

Received 26 November 2008

Revised 15 December 2008

Accepted 16 December 2008

Available online 24 December 2008

Keywords:

Linear acetylenes

N-Difluoromethyl-1,2-dihydropyridin-2-ones

Cyclooxygenase-1

Cyclooxygenase-2 and 5-lipoxygenase inhibition

Anti-inflammatory activity

ABSTRACT

A hitherto unknown class of linear acetylene regioisomers were designed such that a SO_2Me or SO_2NH_2 group was located at the *ortho*-, *meta*- or *para*-position of the acetylene C-1 phenyl ring, and a *N*-difluoromethyl-1,2-dihydropyridin-2-one moiety was attached via its C-5 position to the C-2 position on an acetylene template (scaffold). All three SO_2Me regioisomers, and the 4- SO_2NH_2 analog, were potent inhibitors of 5-lipoxygenase (5-LOX IC_{50} = 3.2–3.5 μM range) relative to the reference drug caffeic acid (IC_{50} = 4.0 μM). The SO_2Me regioisomers exhibited weak cyclooxygenase-1 (COX-1) and -2 (COX-2) inhibitory activity with a modest COX-2 selectivity index. The most potent 3- SO_2Me , 4- SO_2Me and 4- SO_2NH_2 compounds, with respective ED_{50} values of 66.1, 68.5 and 86.5 mg/kg po, exhibited comparable oral anti-inflammatory (AI) activity to that of the reference drug ibuprofen (ED_{50} = 67.4 mg/kg po). The *N*-difluoromethyl-1,2-dihydropyridin-2-one moiety provides a novel pharmacophore for the design of cyclic hydroxamic mimetics capable of inhibiting 5-LOX for exploitation in the development of 5-LOX inhibitory AI drugs.

© 2009 Elsevier Ltd. All rights reserved.

A group of 1-(aryl)-2-(pyridyl)acetylene regioisomers (**1**) were recently reported that are inhibitors of the cyclooxygenase-1 (COX-1) and/or cyclooxygenase-2 (COX-2) isozymes (see structure in Fig. 1).¹ Subsequent replacement of the pyridyl ring in the acetylenes **1** by a *N*-hydroxy-1,2-dihydropyridin-2-one cyclic hydroxamic acid moiety, that has the potential to chelate iron, provided a novel class of 5-lipoxygenase (5-LOX) inhibitors (**2**).² It was anticipated that elaboration of the pyridyl ring present in the 1-(aryl)-2-(pyridyl)acetylene regioisomers (**1**) to a *N*-difluoromethyl-1,2-dihydropyridin-2-one moiety would provide a potential 5-LOX pharmacophore. This concept is based on the premise that the *N*-difluoromethyl-1,2-dihydropyridin-2-one group may bind to, or chelate iron present in the 5-LOX enzyme. Hybrid compounds of this type also containing a suitably positioned methanesulfonyl (MeSO_2) or sulfonamide (H_2NSO_2) COX-2 pharmacophore constitute a potential class of dual COX/5-LOX inhibitors. Accordingly, we now describe the synthesis of a novel group of linear acetylenes (**9a–d**) that possess COX-2 and 5-LOX pharmacophores, their *in vitro* evaluation as 5-LOX, COX-1/COX-2 inhibitors, and *in vivo* assessment as anti-inflammatory agents.

The target 1-(2-, 3- and 4-methanesulfonylphenyl and 4-aminosulfonylphenyl)-2-[5-(1-difluoromethyl-1,2-dihydropyridin-2-one)]-acetylenes (**9a–d**) were prepared using the reaction sequence illustrated in Scheme 1. 2-Iodothioanisole (**3a**)³ and 3-iodothioanisole (**3b**)⁴ were synthesized in 91% and 76% yield starting from the respective 2-(methylthio)aniline and 3-(methylthio)aniline using the procedure of Ullmann.⁵ The Sonogashira cross-coupling reaction of 2-amino-5-ethynylpyridine (**4**)⁶ with a halothioanisole (**3a–c**), or 4-bromobenzenesulfonamide (**3d**),⁷ in the presence of cuprous iodide (CuI), dichlorobis(triphenylphosphine)palladium(II)

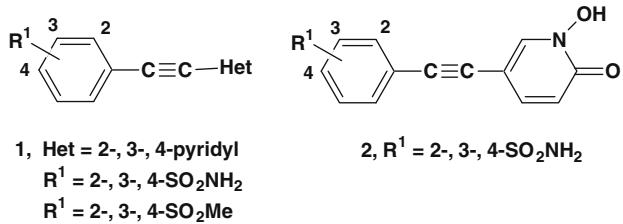
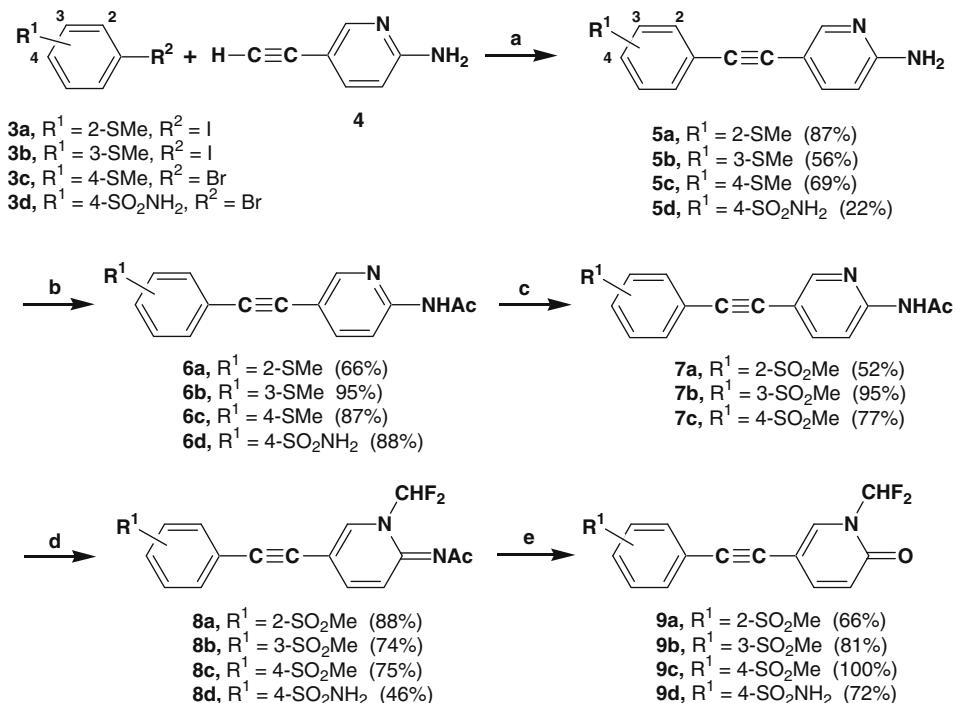



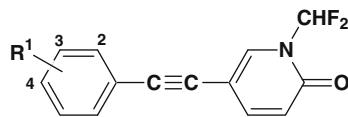
Figure 1. Linear acetylenes that exhibit COX-1 and COX-2 (**1**), and 5-LOX (**2**), inhibitory activities.

* Corresponding author. Tel.: +1 780 492 5993; fax: +1 780 492 1217.
 E-mail address: eknaus@pharmacy.ualberta.ca (E.E. Knaus).

Scheme 1. Reagents and conditions: (a) Et_3N -THF, PPh_3 , $\text{Pd}(\text{PPh}_3)_2\text{Cl}_2$, CuI , 75–80 °C, overnight; (b) Ac_2O , 80 °C, 4 h; (c) Oxone®, MeOH - THF - H_2O , 25 °C, 2 h, (6a–c); (d) $\text{ClCF}_2\text{COONa}$, MeCN , reflux, 18 h (6d, 7a–c); (e) 1% KHSO_4 , MeCN , reflux, 2 h.

($[\text{Pd}(\text{PPh}_3)_2\text{Cl}_2]$) catalyst and triphenylphosphine (PPh_3) in Et_3N -THF under an argon atmosphere⁶ afforded the 1-(2-, 3- or 4-methylthiophenyl and 4-aminosulfonylphenyl)-2-(2-aminopyrid-5-yl)acetylenes (**5a–d**) in 22–87% yield. Acetylation of the amino group in **5a–d** using acetic anhydride⁸ at 80 °C afforded the 1-(2-, 3- or 4-methylthiophenyl and 4-aminosulfonylphenyl)-2-(2-acetamidopyrid-5-yl)acetylenes (**6a–d**) in 66–95% yields. Oxidation of the thiomethyl substituent in **6a–c** to a methanesulfonyl group using an aqueous solution of Oxone® (potassium peroxyxonate)¹ in MeOH - THF afforded the 1-(2-, 3- or 4-methanesulfonylphenyl)-2-(2-acetamidopyrid-5-yl)acetylene regioisomers (**7a–c**) in 52–95% yields. The difluoromethylation of **6d** and **7a–c** with 1.2 equiv of sodium chlorodifluoroacetate⁹ ($\text{ClCF}_2\text{COONa}$) proceeded smoothly in refluxing acetonitrile to furnish the expected 1-(2-, 3- or 4-methanesulfonylphenyl and 4-aminosulfonylphenyl)-2-[5-(1-difluoromethyl-1,2-dihydropyridin-2-acetylmino)acetylenes (**8a–d**) in 46–88% yields. Subsequent hydrolysis of **8a–d** with 1% aq potassium hydrogen sulfate⁹ afforded the target 1-(2-, 3- and 4-methanesulfonylphenyl and 4-aminosulfonylphenyl)-2-[5-(1-difluoromethyl-1,2-dihydropyrid-2-one)acetylenes (**9a–d**) in 66–100% isolated yield.

The rational for the design of the 1-(2-, 3- and 4-methanesulfonylphenyl and 4-aminosulfonylphenyl)-2-[5-(1-difluoromethyl-1,2-dihydropyrid-2-one)acetylenes (**9a–d**) was based on the expectation that replacement of a pyridyl ring in the 1-(aryl)-2-(pyridyl)acetylene regioisomers (**1**), or replacement of the *N*-hydroxypyridin-2(1*H*)one moiety present in the 1-(benzenesulfonamido)-2-[5-(*N*-hydroxypyrid-2(1*H*)-one)]acetylene regioisomers (**2**), would furnish a novel class of compounds with dual 5-LOX/COX-2 inhibitory activities. The CONCHF_2 part of the *N*-difluoromethyl-1,2-dihydropyrid-2-one ring present in **9a–d** can be viewed as a cyclic hydroxamic acid mimetic. These *N*-difluoromethyl-1,2-dihydropyrid-2-ones, like acyclic hydroxamic acids, are expected to serve as effective iron chelators to exhibit 5-LOX inhibitory activity. It has been reported that there is a substantial build-up of negative potential around the two fluorine atoms of a CHF_2 group.¹⁰ Despite this


high electron-density, an aliphatic fluorine seldom acts as a hydrogen-bond acceptor, presumably due to its high electronegativity and low polarizability.^{11,12} Instead, it is plausible that the CHF_2 group may interact with a positively charged region on the enzyme that may contribute to enhanced affinity and competitive reversible inhibition of the COX and/or 5-LOX enzymes.¹³ In addition, these cyclic *N*-difluoromethyl-1,2-dihydropyrid-2-ones, unlike acyclic hydroxamic acids which undergo facile biotransformation to the acids, are expected to have a greater metabolic stability with improved oral efficacy. Although there is some distortion from planarity at the *N*¹-nitrogen atom of the *N*-difluoromethyl-1,2-dihydropyrid-2-one ring system, the relatively flat diene portion of this quasi-planar ring system has the potential to serve as a suitable replacement for the pyridyl group in the 1-(aryl)-2-(pyridyl)acetylene regioisomers (**1**) resulting in retention of selective COX-2 inhibitory activity.

In vitro COX-1 and COX-2 enzyme inhibition studies showed that the *N*-difluoromethyl-1,2-dihydropyrid-2-ones (**9a–d**) were much weaker inhibitors (COX-1 IC_{50} = 5.2 to >100 μM range; COX-2 IC_{50} = 3.7–9.4 μM range) than the selective COX-2 inhibitor celecoxib (COX-1 IC_{50} = 7.7 μM ; COX-2 IC_{50} = 0.12 μM) (see data in Table 1). The MeSO_2 regioisomers **9a–c** are more potent inhibitors of COX-2 than COX-1 thereby showing some COX-2 selectivity. The 4- SO_2Me (**9c**) and 4- SO_2NH_2 (**9d**) compounds exhibited relatively similar COX-1/COX-2 inhibitory activity. In contrast, all *N*-difluoromethyl-1,2-dihydropyrid-2-ones (**9a–d**) were more potent in vitro inhibitors of the potato 5-LOX enzyme (IC_{50} = 3.2–3.5 μM range) than the reference drug caffeic acid (IC_{50} = 4.0 μM). This small difference in 5-LOX inhibitory potency for compounds **9a–d** suggests that the *N*-difluoromethyl-1,2-dihydropyrid-2-one, rather than the position (*ortho*, *meta* or *para*) of the methanesulfonyl or aminosulfonyl COX-2 pharmacophore, is the major determinant of 5-LOX inhibitory activity.

The oral AI activities (ED_{50} values) exhibited by the *N*-difluoromethyl-1,2-dihydropyrid-2-ones (**9a–d**) were determined using a carrageenan-induced rat paw edema model (see data in Table 1). The AI structure–activity data acquired showed that the 3- SO_2Me (**9b**, ED_{50} = 66.1 mg/kg po), 4- SO_2Me (**9c**, ED_{50} = 68.5 mg/

Table 1

In vitro COX-1, COX-2, 5-LOX enzyme inhibition, and in vivo anti-inflammatory activity, data for the 1-(2-, 3- and 4-methanesulfonylphenyl and 4-aminosulfonylphenyl)-2-[5-(1-difluoromethyl-1,2-dihydropyrid-2-one)]acetylenes (**9a–d**)

Compound	R ¹	COX-1 IC ₅₀ ^a (μM)	COX-2 IC ₅₀ ^a (μM)	5-LOX IC ₅₀ ^b (μM)	AI activity ^c ED ₅₀ (mg/kg)
9a	2-SO ₂ Me	>100	9.4	3.4	>100
9b	3-SO ₂ Me	32.4	3.7	3.2	66.1
9c	4-SO ₂ Me	14.1	5.1	3.3	68.5
9d	4-SO ₂ NH ₂	5.2	6.0	3.5	86.5
Celecoxib		7.7	0.12	—	10.8
Ibuprofen		2.9	1.1 ^d	—	67.4
Aspirin		0.35	2.4 ^d	—	128.9
Caffeic acid	—	—	—	4.0	—

^a The in vitro test compound concentration required to produce 50% inhibition of ovine COX-1 or human recombinant COX-2. The result (IC₅₀, μM) is the mean of two determinations acquired using the enzyme immuno assay kit (Catalog No. 560131, Cayman Chemicals, Inc., Ann Arbor, MI, USA) and the deviation from the mean is <10% of the mean value.

^b The in vitro test compound concentration required to produce 50% inhibition of potato 5-LOX (Cayman Chemicals, Inc., Catalog No. 60401). The result (IC₅₀, μM) is the mean of two determinations acquired using a LOX assay kit (Catalog No. 760700, Cayman Chemicals, Inc., Ann Arbor, MI, USA) and the deviation from the mean is <10% of the mean value.

^c Inhibitory activity in a carrageenan-induced rat paw edema assay. The results are expressed as the ED₅₀ value (mg/kg) at 3 h after oral administration of the test compound.

^d Data acquired using ovine COX-2 (Catalog No. 560101, Cayman Chemicals, Inc.).

kg po) and 4-SO₂NH₂ (**9d**, ED₅₀ = 86.5 mg/kg po), compounds exhibited AI activities that were more similar to that of the reference drug ibuprofen (ED₅₀ = 67.4 mg/kg po) than the selective COX-2 inhibitor celecoxib (ED₅₀ = 10.8 mg/kg po) or the non-selective COX inhibitor aspirin (ED₅₀ = 128.9 mg/kg po). The in vitro and in vivo structure–activity data acquired suggest that the *N*-difluoromethyl-1,2-dihydropyrid-2-ones (**9b–d**), that are weak inhibitors of the COX-1 and COX-2 isozymes, exhibit their AI effect to a significant degree by preventing the biosynthesis of proinflammatory leukotrienes (LTs) produced via the LOX pathway.

The *N*-hydroxypyrid-2(1*H*)-one regioisomers (**2**, R¹ = 2-, 3- and 4-SO₂NH₂) reported previously exhibited excellent 5-LOX inhibitory activities (IC₅₀ = 10–68 μM range) relative to the reference drug nordihydroguaiaretic acid (NDGA, IC₅₀ = 35 μM) determined using a cell-based enzyme immuno assay. In spite of this high in vitro 5-LOX inhibitory activity, only the 2-SO₂NH₂ regioisomer (**2**) exhibited in vivo AI activity (ED₅₀ = 86 mg/kg po).² In comparison, the *N*-difluoromethyl-1,2-dihydropyrid-2-ones **9a–d**, as indicated above, were potent in vitro inhibitors of the isolated potato 5-LOX enzyme (IC₅₀ = 3.2–3.5 μM range) similar to the reference drug caffeic acid (IC₅₀ = 4.0 μM). In contrast, all of the *N*-difluoromethyl-1,2-dihydropyrid-2-ones **9**, with the exception of the 2-SO₂Me regioisomer **9a**, exhibited good AI activity. These latter differences in AI structure–activity relationships suggests the *N*-difluoromethyl-1,2-dihydropyrid-2-one moiety may have more favorable bioavailability, biodistribution and/or metabolic properties making it more suitable than the *N*-hydroxypyrid-2(1*H*)-one moiety as a 5-LOX pharmacophore.

In conclusion, a hitherto unknown class of 1-(2-, 3- and 4-methanesulfonylphenyl and 4-aminosulfonylphenyl)-2-[5-(1-difluoromethyl-1,2-dihydropyrid-2-one)]acetylenes (**9a–d**)¹⁴ was designed for evaluation as dual 5-LOX¹⁵ and COX-1/COX-2 isozyme¹⁶ inhibitors of inflammation. The structure–activity data acquired indicate that (i) the relative AI potency order with respect to the aryl substituent is 3-SO₂Me (**9b**) ≈ 4-SO₂Me (**9c**) > 4-SO₂NH₂ ≫ 2-SO₂Me (**9a**), (ii) the *N*-difluoromethyl-1,2-dihydropyrid-2-one moiety provides a novel 5-LOX pharmacophore for the design of cyclic hydroxamic mimetics and (iii) the title compounds **9b–d**, that are very weak inhibitors of the COX-1/COX-2 isozymes, exhibit

anti-inflammatory activity¹⁷ that is dependent upon inhibition of proinflammatory leukotriene biosynthesis in the lipoxygenase pathway.

Acknowledgment

We are grateful to the Canadian Institutes of Health Research (CIHR) (MOP-14712) for financial support of this research.

References and notes

- Chowdhury, M. A.; Dong, Y.; Chen, Q.-H.; Abdellatif, K. R. A.; Knaus, E. E. *Bioorg. Med. Chem.* **2008**, *16*, 1948.
- Chowdhury, M. A.; Chen, H.; Abdellatif, K. R. A.; Dong, Y.; Petruk, K. C.; Knaus, E. E. *Bioorg. Med. Chem. Lett.* **2008**, *18*, 4195.
- Larock, R. C.; Harrison, W. *J. Am. Chem. Soc.* **1984**, *106*, 4218.
- Mongin, O.; Papamicael, C.; Hoyler, N.; Gossauer, A. *J. Org. Chem.* **1998**, *63*, 5568.
- Ullmann, F. *Justus Liebigs Ann. Chem.* **1904**, *332*, 69.
- Aakeröy, C. B.; Schultheiss, N.; Desper, J. *Dalton Trans.* **2006**, 1627.
- Anana, R.; Rao, P. N. P.; Chen, Q.-H.; Knaus, E. E. *Bioorg. Med. Chem.* **2006**, *14*, 5259.
- Sollogoub, M.; Fox, K. R.; Powers, V. E. C.; Brown, T. *Tetrahedron Lett.* **2002**, *43*, 3121.
- Ando, M.; Wada, T.; Sato, N. *Org. Lett.* **2006**, *8*, 3805.
- Narjes, F.; Koehler, K. F.; Koch, U.; Gerlach, B.; Colarusso, S.; Steinkühler, C.; Brunetti, M.; Altamura, S.; De Francesco, R.; Matassa, V. G. *Bioorg. Med. Chem. Lett.* **2002**, *12*, 701, and references cited therein.
- Dunitz, J. D.; Taylor, R. *Chem. Eur. J.* **1997**, *3*, 89.
- Howard, J. A. K.; Hoy, V. J.; O'Hagan, D.; Smith, G. T. *Tetrahedron* **1996**, *52*, 12613.
- Chavatte, P.; Yous, S.; Marot, C.; Baurin, N.; Lesieur, D. *J. Med. Chem.* **2001**, *44*, 3223.
- Experimental procedures and spectral data for compounds **5a–d**, **6a–d**, **7a–c**, **8a–d** and **9a–d**. *General procedure for the synthesis of 1-(2-, 3- or 4-methanesulfonylphenyl and 4-aminosulfonylphenyl)-2-(2-aminopyrid-5-yl)acetylenes (**5a–d**, **6a–d**, **7a–c**, **8a–d** and **9a–d**).* Bis(triphenylphosphine)palladium(II) dichloride (0.22 g, 0.32 mmol), copper(I) iodide (0.05 g, 0.26 mmol) and triphenylphosphine (0.22 g, 0.84 mmol) were added to a stirred solution of 2-amino-5-ethynylpyridine (**4**, 1.03 g, 8.70 mmol) and a bromo- or iodothioanisole (**3a**, **3b** or **3c**), or 4-bromobenzenesulfonamide (**3d**), (10.12 mmol) in Et₃N-THF (1:1 v/v, 60 mL) at 25 °C. Dry argon was bubbled through the resultant mixture for 10 min. The reaction was allowed to proceed at 80 °C overnight under an argon atmosphere, the mixture was cooled to 25 °C, and filtered to remove the inorganic salts. The solvent from the filtrate was removed in vacuo, and the residue obtained was purified by silica gel column chromatography using hexanes/EtOAc (1:3, v/v) as eluent to furnish the respective product **5a–d**. Some physical and spectroscopic data for **5a–d** are listed below.
- 1-(2-Methanesulfonylphenyl)-2-(2-aminopyrid-5-yl)acetylene (**5a**).* The product was obtained as a pale yellow solid using the Sonogashira cross-coupling reaction of 2-iodothioanisole (**3a**) with **4** in 87% yield; mp 103–105 °C; IR (film): 3370, 3300 (NH₂), 2200 (C≡C) cm⁻¹; ¹H NMR (CDCl₃) δ 2.51 (s, 3H, SMe), 4.62 (br s, 2H, NH₂ that exchanges with D₂O), 6.48 (d, J = 8.5 Hz, 1H, pyridyl H-3), 7.11 (ddd, J = 7.3,

7.3, 1.2 Hz, 1H, phenyl H-5), 7.18 (dd, J = 7.3, 1.2 Hz, 1H, phenyl H-3), 7.30 (ddd, J = 7.3, 7.3, 1.2 Hz, 1H, phenyl H-4), 7.46 (dd, J = 7.3, 1.2 Hz, 1H, phenyl H-6), 7.61 (dd, J = 8.5, 1.8 Hz, 1H, pyridyl H-4), 8.32 (d, J = 1.8 Hz, 1H, pyridyl H-6); ^{13}C NMR (CDCl_3) δ 15.1, 87.3, 93.5, 107.9, 109.8, 121.4, 124.0, 124.2, 128.5, 131.9, 140.3, 141.2, 151.4, 157.5.

1-(3-Methylthiophenyl)-2-(2-aminopyrid-5-yl)acetylene (5b). The product was obtained as a pale yellow solid using the Sonogashira cross-coupling reaction of 3-iodothioanisole (**3b**) with **4** in 56% yield; mp 115–117 °C; IR (film): 3300, 3250 (NH₂), 2200 (C≡C) cm⁻¹; ^1H NMR (CDCl_3) δ 2.50 (s, 3H, SMe), 4.68 (br s, 2H, NH₂ that exchanges with D₂O), 6.48 (d, J = 8.5 Hz, 1H, pyridyl H-3), 7.15–7.30 (m, 3H, phenyl H-4, H-5, H-6), 7.37 (s, 1H, phenyl H-2), 7.57 (dd, J = 8.5, 1.8 Hz, 1H, pyridyl H-4), 8.28 (d, J = 1.8 Hz, 1H, pyridyl H-6); ^{13}C NMR (CDCl_3) δ 15.7, 87.4, 89.4, 107.9, 109.6, 124.0, 126.2, 127.9, 128.6, 128.7, 138.8, 140.3, 151.4, 157.5.

1-(4-Methylthiophenyl)-2-(2-aminopyrid-5-yl)acetylene (5c). The product was obtained as a pale yellow solid using the Sonogashira cross-coupling reaction of 4-bromothioanisole (**3c**) with **4** in 69% yield; mp 155–157 °C; IR (film): 3435, 3305 (NH₂), 2200 (C≡C) cm⁻¹; ^1H NMR (CDCl_3) δ 2.50 (s, 3H, SMe), 4.59 (br s, 2H, NH₂ that exchanges with D₂O), 6.48 (d, J = 8.5 Hz, 1H, pyridyl H-3), 7.20 (dd, J = 8.5, 1.8 Hz, 2H, phenyl H-3, H-5), 7.41 (dd, J = 8.5, 1.8 Hz, 2H, phenyl H-2, H-6), 7.55 (dd, J = 8.5, 1.8 Hz, 1H, pyridyl H-4), 8.27 (d, J = 1.8 Hz, 1H, pyridyl H-6); ^{13}C NMR (CDCl_3) δ 15.4, 87.0, 89.6, 107.9, 110.0, 119.6, 125.9, 131.6, 139.0, 140.3, 151.3, 157.3.

1-(4-Aminosulfonylphenyl)-2-(2-aminopyrid-5-yl)acetylene (5d). The product was obtained as a pale yellow solid using the Sonogashira cross-coupling reaction of **3d** with **4** in 22% yield; mp 248–250 °C; IR (film): 3480, 3367, 3323 (NH₂), 2217 (C≡C), 1311, 1167 (SO₂) cm⁻¹; ^1H NMR ($\text{DMSO}-d_6$) δ 6.46 (d, J = 8.5 Hz, 1H, pyridyl H-3), 6.51 (br s, 2H, NH₂ that exchanges with D₂O), 7.43 (br s, 2H, SO₂NH₂ that exchanges with D₂O), 7.53 (dd, J = 8.5, 2.4 Hz, 1H, pyridyl H-4), 7.65 (d, J = 8.5 Hz, 2H, phenyl H-2, H-6), 8.15 (d, J = 2.4 Hz, 1H, pyridyl H-6); ^{13}C NMR (CDCl_3) δ 88.3, 89.7, 106.9, 108.6, 125.8, 126.6, 130.9, 140.2, 142.6, 149.4, 157.9.

General procedure for the synthesis of 1-(2-, 3- or 4-methylthiophenyl and 4-aminosulfonylphenyl)-2-(2-acetamidopyrid-5-yl)acetylenes (6a–d). A solution of a 1-(2-, 3- or 4-methylthiophenyl or 4-aminosulfonylphenyl)-2-(2-aminopyrid-5-yl)acetylene (**5a–d**) (5 mmol) in acetic anhydride (50 mL) was heated at 80 °C for 2 h. The reaction was cooled to 25 °C, the solvent was removed in vacuo, and the crude product was purified by silica gel column chromatography using hexanes/EtOAc (2:1, v/v) as eluent to furnish the respective product **6a–d**. Some physical and spectroscopic data for **6a–d** are listed below.

1-(2-Methylthiophenyl)-2-(2-acetamidopyrid-5-yl)acetylene (6a). The product was obtained as a white solid in 66% yield; mp 138–140 °C; IR (film): 3250 (NH), 2200 (C≡C), 1700 (CO) cm⁻¹; ^1H NMR (CDCl_3) δ 2.23 (s, 3H, COMe), 2.53 (s, 3H, SMe), 7.14 (ddd, J = 7.3, 7.3, 1.2 Hz, 1H, phenyl H-5), 7.20 (dd, J = 7.3, 1.2 Hz, 1H, phenyl H-3), 7.34 (ddd, J = 7.3, 7.3, 1.2 Hz, 1H, phenyl H-4), 7.49 (dd, J = 7.3, 1.2 Hz, 1H, phenyl H-6), 7.88 (dd, J = 8.5, 1.8 Hz, 1H, pyridyl H-4), 8.15 (br s, 1H, NH that exchanges with D₂O), 8.23 (d, J = 8.5 Hz, 1H, pyridyl H-3), 8.48 (d, J = 1.8 Hz, 1H, pyridyl H-6); ^{13}C NMR (CDCl_3) δ 15.0, 24.8, 89.2, 92.2, 113.1, 116.0, 120.7, 124.0, 124.3, 129.1, 132.2, 140.9, 141.7, 150.4, 168.5.

1-(3-Methylthiophenyl)-2-(2-acetamidopyrid-5-yl)acetylene (6b). The product was obtained as a yellow solid in 95% yield; mp 125–127 °C; IR (film): 3250 (NH), 2200 (C≡C), 1700 (CO) cm⁻¹; ^1H NMR (CDCl_3) δ 2.23 (s, 3H, COMe), 2.51 (s, 3H, SMe), 7.20–7.35 (m, 3H, phenyl H-4, H-5, H-6), 7.40 (s, 1H, phenyl H-2), 7.83 (dd, J = 8.5, 1.8 Hz, 1H, pyridyl H-4), 8.23 (d, J = 8.5 Hz, 1H, pyridyl H-3), 8.26 (br s, 1H, NH that exchanges with D₂O), 8.42 (d, J = 1.8 Hz, 1H, pyridyl H-6); ^{13}C NMR (CDCl_3) δ 15.6, 24.7, 85.9, 91.4, 113.6, 115.9, 123.2, 126.7, 128.0, 128.6, 128.8, 139.0, 141.3, 149.7, 150.5, 168.8.

1-(4-Methylthiophenyl)-2-(2-acetamidopyrid-5-yl)acetylene (6c). The product was obtained as a pale yellow solid in 87% yield; mp 200–202 °C; IR (film): 3250 (NH), 2200 (C≡C), 1700 (CO) cm⁻¹; ^1H NMR (CDCl_3) δ 2.23 (s, 3H, COMe), 2.51 (s, 3H, SMe), 7.22 (dd, J = 8.5, 1.8 Hz, 2H, phenyl H-3, H-5), 7.44 (dd, J = 8.5, 1.8 Hz, 2H, phenyl H-2, H-6), 7.82 (dd, J = 8.5, 1.8 Hz, 1H, pyridyl H-4), 8.05 (br s, 1H, NH that exchanges with D₂O), 8.21 (d, J = 8.5 Hz, 1H, pyridyl H-3), 8.42 (d, J = 1.8 Hz, 1H, pyridyl H-6); ^{13}C NMR (CDCl_3) δ 15.3, 24.8, 85.9, 91.6, 113.1, 116.2, 118.9, 125.8, 131.8, 139.8, 140.8, 150.1, 150.3, 168.5.

1-(4-Aminosulfonylphenyl)-2-(2-acetamidopyrid-5-yl)acetylene (6d). The product was obtained as a pale yellow solid in 88% yield; mp 225–227 °C; IR (film): 3321 (NH), 2217 (C≡C), 1700 (CO), 1334, 1150 (SO₂) cm⁻¹; ^1H NMR ($\text{CDCl}_3 + \text{DMSO}-d_6$) δ 2.10 (s, 3H, COMe), 7.21 (br s, 2H, SO₂NH₂ that exchanges with D₂O), 7.56 (d, J = 8.5 Hz, 2H, phenyl H-2, H-6), 7.75 (dd, J = 8.5, 2.4 Hz, 1H, pyridyl H-4), 7.82 (d, J = 8.5 Hz, 2H, phenyl H-3, H-5), 8.13 (d, J = 8.5 Hz, 1H, pyridyl H-3), 8.39 (d, J = 2.4 Hz, 1H, pyridyl H-6), 10.48 (br s, 1H, NH that exchanges with D₂O); ^{13}C NMR (CDCl_3) δ 22.9, 88.5, 89.3, 125.5, 125.6, 127.5, 131.1, 138.4, 140.1, 143.2, 151.4, 169.1.

General procedure for the synthesis of 1-(2-, 3- or 4-methylsulfonylphenyl)-2-(2-acetamidopyrid-5-yl)acetylenes (7a–c). An aqueous solution of Oxone® (6.14 g, 10 mmol, 18 mL) was added to a stirred solution of a 1-(2-, 3- or 4-methylthiophenyl)-2-(2-acetamidopyrid-5-yl)acetylene (**6a–c**) (2 mmol) in methanol (30 mL) and THF (30 mL), and the reaction was allowed to proceed with stirring at 25 °C for 3 h. The reaction mixture was diluted with water (200 mL), extracted with EtOAc (3 × 75 mL), the organic phase was washed successively with water and brine, and dried (MgSO₄). After filtration, the solvent from the organic fraction was removed in vacuo to give a crude product which was purified by silica gel column chromatography using hexanes/EtOAc (1:3, v/v) as eluent to furnish the respective title compound **7a–c**. Some physical and spectroscopic data for **7a–c** are listed below.

1-(2-Methanesulfonylphenyl)-2-(2-acetamidopyrid-5-yl)acetylene (7a). The product was obtained as a white solid in 52% yield; mp 180–182 °C; IR (film): 3330 (NH), 2200 (C≡C), 1700 (CO), 1300, 1150 (SO₂) cm⁻¹; ^1H NMR (CDCl_3) δ 2.25 (s, 3H, COMe), 3.31 (s, 3H, SO₂Me), 7.55 (ddd, J = 7.3, 7.3, 1.2 Hz, 1H, phenyl H-5), 7.65 (ddd, J = 7.3, 7.3, 1.2 Hz, 1H, phenyl H-4), 7.70 (dd, J = 9.2, 1.8 Hz, 1H, pyridyl H-4), 8.15 (dd, J = 7.3, 1.2 Hz, 1H, phenyl H-3), 8.27 (d, J = 9.2 Hz, 1H, pyridyl H-3), 8.31 (br s, 1H, NH that exchanges with D₂O), 8.50 (d, J = 1.8 Hz, 1H, pyridyl H-6); ^{13}C NMR (CDCl_3) δ 24.8, 42.5, 87.7, 94.8, 113.3, 114.9, 121.6, 128.8, 128.9, 133.2, 134.2, 141.0, 150.6, 151.1, 168.7.

1-(3-Methanesulfonylphenyl)-2-(2-acetamidopyrid-5-yl)acetylene (7b). The product was obtained as a yellow solid in 95% yield; mp 170–172 °C; IR (film): 3325 (NH), 2200 (C≡C), 1700 (CO), 1300, 1150 (SO₂) cm⁻¹; ^1H NMR (CDCl_3) δ 2.24 (s, 3H, COMe), 3.09 (s, 3H, SO₂Me), 7.59 (dd, J = 7.9, 7.9 Hz, 1H, phenyl H-5), 7.79 (ddd, J = 7.9, 1.2, 1.2 Hz, 1H, phenyl H-6), 7.85 (dd, J = 8.5, 1.8 Hz, 1H, pyridyl H-4), 7.92 (dd, J = 7.9, 1.2 Hz, 1H, phenyl H-4), 8.12 (dd, J = 1.2, 1.2 Hz, 1H, phenyl H-2), 8.15 (br s, 1H, NH that exchanges with D₂O), 8.26 (d, J = 8.5 Hz, 1H, pyridyl H-3), 8.45 (d, J = 1.8 Hz, 1H, pyridyl H-6); ^{13}C NMR (CDCl_3) δ 24.8, 44.4, 88.3, 89.4, 113.3, 115.1, 124.5, 126.9, 129.5, 130.4, 136.2, 141.0, 141.1, 150.5, 150.8, 168.7.

1-(4-Methanesulfonylphenyl)-2-(2-acetamidopyrid-5-yl)acetylene (7c). The product was obtained as a pale yellow solid in 77% yield; mp 205–207 °C; IR (film): 3360 (NH), 2200 (C≡C), 1700 (CO), 1300, 1150 (SO₂) cm⁻¹; ^1H NMR (CDCl_3) δ 2.24 (s, 3H, COMe), 3.09 (s, 3H, SO₂Me), 7.71 (dd, J = 8.5, 1.8 Hz, 2H, phenyl H-2, H-6), 7.85 (dd, J = 8.5, 1.8 Hz, 1H, pyridyl H-4), 7.95 (dd, J = 8.5, 1.8 Hz, 2H, phenyl H-3, H-5), 8.10 (br s, 1H, NH that exchanges with D₂O), 8.25 (d, J = 8.5 Hz, 1H, pyridyl H-3), 8.46 (d, J = 1.8 Hz, 1H, pyridyl H-6); ^{13}C NMR (CDCl_3) δ 24.8, 44.5, 89.9, 113.2, 115.0, 127.5, 128.6, 132.2, 139.8, 141.1, 150.7, 150.9, 168.6.

General procedure for the synthesis of 1-(2-, 3- or 4-methanesulfonylphenyl and 4-aminosulfonylphenyl)-2-[5-(1-difluoromethyl-1,2-dihydropyrid-2-acetylmino)]acetylenes (8a–d). Sodium chlorodifluoroacetate (0.68 g, 4.46 mmol) was added to a stirred solution of a 1-(2-, 3- or 4-methanesulfonylphenyl or aminosulfonylphenyl)-2-(2-acetamidopyrid-5-yl)acetylene (**6d**, **7a–c**, 3.66 mmol) in dry acetonitrile (75 mL), and the mixture was heated at reflux for 18 h under an argon atmosphere. At this time, the mixture was concentrated and saturated aqueous NaHCO₃ (25 mL) was added and this mixture was extracted with EtOAc (3 × 30 mL). The combined organic phases were washed with brine, and dried (MgSO₄). After filtration, the solvent from the organic fraction was removed in vacuo to give a crude product which was purified by silica gel column chromatography using hexanes/EtOAc (1:3, v/v) as eluent to afford the respective product **8a–d**. The spectral data for compounds **8a–d** are listed below.

1-(2-Methanesulfonylphenyl)-2-[5-(1-difluoromethyl-1,2-dihydropyrid-2-acetylmino)]acetylene (8a). The product was obtained as a brown solid in 88% yield; mp 95–97 °C; IR (film): 2200 (C≡C), 1670 (CO), 1300, 1150 (SO₂) cm⁻¹; ^1H NMR (CDCl_3) δ 2.23 (s, 3H, COMe), 3.24 (s, 3H, SO₂Me), 7.45 (dd, J = 9.8, 1.8 Hz, 1H, pyridyl H-4), 7.56 (ddd, J = 7.9, 7.9, 1.2 Hz, 1H, phenyl H-5), 7.64 (ddd, J = 7.9, 7.9, 1.2 Hz, 1H, phenyl H-4), 7.70 (dd, J = 7.9, 1.2 Hz, 1H, phenyl H-6), 7.75 (d, J = 9.8 Hz, 1H, pyridyl H-3), 7.87 (d, J = 1.8 Hz, 1H, pyridyl H-6), 8.01 (t, J = 60.5 Hz, 1H, CHF₂), 8.14 (dd, J = 7.9, 1.2 Hz, 1H, phenyl H-3); ^{13}C NMR (CDCl_3) δ 28.0, 42.6, 87.4, 92.2, 105.0, 119.8, 121.0, 129.1, 129.1, 133.1, 134.1, 140.7, 141.0, 153.7, 182.3.

1-(3-Methanesulfonylphenyl)-2-[5-(1-difluoromethyl-1,2-dihydropyrid-2-acetylmino)]acetylene (8b). The product was obtained as a yellow solid in 74% yield; mp 132–134 °C; IR (film): 2200 (C≡C), 1670 (CO), 1300, 1150 (SO₂) cm⁻¹; ^1H NMR (CDCl_3) δ 2.23 (s, 3H, COMe), 3.09 (s, 3H, SO₂Me), 7.40 (dd, J = 9.8, 2.5 Hz, 1H, pyridyl H-4), 7.59 (dd, J = 7.9, 7.9 Hz, 1H, phenyl H-5), 7.75 (ddd, J = 7.9, 1.8, 1.8 Hz, 1H, phenyl H-6), 7.78 (d, J = 9.8 Hz, 1H, pyridyl H-3), 7.83 (d, J = 2.5 Hz, 1H, pyridyl H-6), 7.93 (ddd, J = 7.9, 1.8, 1.8 Hz, 1H, phenyl H-4), 8.02 (t, J = 60.5 Hz, 1H, CHF₂), 8.08 (dd, J = 1.8, 1.8 Hz, 1H, phenyl H-2); ^{13}C NMR (CDCl_3) δ 27.9, 44.3, 85.7, 89.2, 105.4, 119.8, 123.8, 127.2, 129.6, 130.3, 133.0, 136.1, 141.0, 141.1, 153.5, 181.9.

1-(4-Methanesulfonylphenyl)-2-[5-(1-difluoromethyl-1,2-dihydropyrid-2-acetylmino)]acetylene (8c). The product was obtained as a pale yellow solid in 75% yield; mp 160–162 °C; IR (film): 2200 (C≡C), 1670 (CO), 1300, 1150 (SO₂) cm⁻¹; ^1H NMR (CDCl_3) δ 2.24 (s, 3H, COMe), 3.09 (s, 3H, SO₂Me), 7.41 (dd, J = 9.8, 1.8 Hz, 1H, pyridyl H-4), 7.68 (dd, J = 8.5, 1.8 Hz, 2H, phenyl H-2, H-6), 7.78 (d, J = 9.8 Hz, 1H, pyridyl H-3), 7.85 (d, J = 1.8 Hz, 1H, pyridyl H-6), 7.95 (dd, J = 8.5, 1.8 Hz, 2H, phenyl H-3, H-5), 8.03 (t, J = 60.5 Hz, 1H, CHF₂); ^{13}C NMR (CDCl_3) δ 28.0, 44.4, 87.4, 89.5, 105.0, 119.8, 127.5, 132.2, 133.1, 140.2, 140.9, 153.7, 182.3.

1-(4-Aminosulfonylphenyl)-2-[5-(1-difluoromethyl-1,2-dihydropyrid-2-acetylmino)]acetylene (8d). The product was obtained as a pale yellow solid in 46% yield; mp 208–210 °C; IR (film): 3300 (broad NH₂), 2219 (C≡C), 1700 (CO), 1294, 1163 (SO₂) cm⁻¹; ^1H NMR ($\text{DMSO}-d_6$) δ 2.11 (s, 3H, COMe), 7.47 (br s, 2H, SO₂NH₂ that exchanges with D₂O), 7.59 (d, J = 9.8 Hz, 1H, pyridyl H-3), 7.67 (dd, J = 9.8, 1.8 Hz, 2H, phenyl H-3, H-5), 8.10 (t, J = 60.5 Hz, 1H, CHF₂), 8.42 (d, J = 1.8 Hz, 1H, pyridyl H-6); ^{13}C NMR ($\text{CDCl}_3 + \text{DMSO}-d_6$) δ 27.3, 85.8, 89.6, 102.5, 119.1, 124.9, 125.7, 131.1, 133.3, 141.3, 143.7, 152.5, 180.1.

General procedure for the synthesis of 1-(2-, 3- or 4-methanesulfonylphenyl and 4-aminosulfonylphenyl)-2-[5-(1-difluoromethyl-1,2-dihydropyrid-2-one)]acetylenes (9a–d). A solution of 1% aq KHSO₄ (45 mL) was added to a stirred solution of a 1-difluoromethyl-1,2-dihydropyrid-2-acetylmino compound (**8a–d**, 3.10 mmol) in acetonitrile (45 mL), and the mixture was heated at reflux for 3 h. At this time, the mixture was concentrated in vacuo, 0.5 N HCl (25 mL) was

added, and the mixture was extracted with EtOAc (3 × 30 mL). The combined organic extracts were washed successively with saturated aqueous NaHCO₃ and brine, and dried (MgSO₄). After filtration, the solvent from the organic fraction was removed in vacuo to give a crude product which was purified by silica gel column chromatography using hexanes/EtOAc (1:2, v/v) as eluent to afford the respective product **9a–d**. The spectral and microanalytical data for compounds **9a–d** are listed below.

1-(2-Methylsulfonylphenyl)-2-[5-(1-difluoromethylpyrid-2-one)]acetylene (9a**).** The product was obtained as a yellow solid in 66% yield; mp 155–157 °C; IR (film): 2200 (C≡C), 1700 (CO), 1300, 1150 (SO₂) cm^{−1}; ¹H NMR (CDCl₃) δ 3.25 (s, 3H, SO₂Me), 6.61 (d, J = 9.8 Hz, 1H, pyridone H-3), 7.55 (dd, J = 9.8, 1.8 Hz, 1H, pyridone H-4), 7.59 (ddd, J = 7.9, 7.9, 1.2 Hz, 1H, phenyl H-5), 7.65–7.75 (m, 2H, phenyl H-4, H-6), 7.68 (t, J = 60.5 Hz, 1H, CHF₂), 7.80 (d, J = 1.8 Hz, 1H, pyridone H-6), 8.15 (dd, J = 7.9, 1.2 Hz, 1H, phenyl H-3); ¹³C NMR (CDCl₃) δ 42.6, 86.9, 92.4, 103.2, 107.1, 121.1, 121.9, 129.0, 133.2, 133.3, 134.0, 140.9, 142.6, 159.4. Anal. Calcd for C₁₅H₁₁F₂NO₃S: C, 55.72; H, 3.43; N, 4.33. Found: C, 55.78; H, 3.66; N, 4.32.

1-(3-Methylsulfonylphenyl)-2-[5-(1-difluoromethylpyrid-2-one)]acetylene (9b**).** The product was obtained as a yellow solid in 81% yield; mp 158–160 °C; IR (film): 2200 (C≡C), 1700 (CO), 1300, 1150 (SO₂) cm^{−1}; ¹H NMR (CDCl₃) δ 3.08 (s, 3H, SO₂Me), 6.59 (d, J = 9.8 Hz, 1H, pyridone H-3), 7.46 (dd, J = 9.8, 2.5 Hz, 1H, pyridone H-4), 7.58 (dd, J = 7.9, 7.9 Hz, 1H, phenyl H-5), 7.67 (t, J = 60.5 Hz, 1H, CHF₂), 7.74 (ddd, J = 7.9, 1.8, 1.8 Hz, 1H, phenyl H-6), 7.75 (d, J = 2.5 Hz, 1H, pyridone H-6), 7.92 (ddd, J = 7.9, 1.8, 1.8 Hz, 1H, phenyl H-4), 8.07 (dd, J = 1.8, 1.8 Hz, 1H, phenyl H-2); ¹³C NMR (CDCl₃) δ 44.4, 86.1, 88.6, 103.3, 107.2, 121.9, 124.1, 127.1, 129.6, 130.3, 133.3, 136.1, 141.1, 142.8, 159.5. Anal. Calcd for C₁₅H₁₁F₂NO₃S: C, 55.72; H, 3.43; N, 4.33. Found: C, 55.85; H, 3.58; N, 4.26.

1-(4-Methylsulfonylphenyl)-2-[5-(1-difluoromethylpyrid-2-one)]acetylene (9c**).** The product was obtained as a white solid in 100% yield; mp 159–161 °C; IR (film): 2200 (C≡C), 1700 (CO), 1300, 1150 (SO₂) cm^{−1}; ¹H NMR (CDCl₃) δ 3.08 (s, 3H, SO₂Me), 6.60 (d, J = 9.8 Hz, 1H, pyridone H-3), 7.47 (dd, J = 9.8, 1.8 Hz, 1H, pyridone H-4), 7.67 (dd, J = 8.5, 1.8 Hz, 2H, phenyl H-2, H-6), 7.68 (t, J = 60.5 Hz, 1H, CHF₂), 7.77 (d, J = 1.8 Hz, 1H, pyridone H-6), 7.94 (dd, J = 8.5, 1.8 Hz, 2H, phenyl H-3, H-5);

¹³C NMR (CDCl₃) δ 44.4, 87.5, 88.9, 103.2, 107.1, 121.8, 127.5, 128.0, 132.1, 133.4, 140.0, 142.7, 159.4. Anal. Calcd for C₁₅H₁₁F₂NO₃S: C, 55.72; H, 3.43; N, 4.33. Found: C, 55.67; H, 3.59; N, 4.27.

1-(4-Aminosulfonylphenyl)-2-[5-(1-difluoromethylpyrid-2-one)]acetylene (9d**).** The product was obtained as a white solid in 72% yield; mp 190–192 °C; IR (film): 3315 (broad NH₂), 2225 (C≡C), 1675 (CO), 1352, 1165 (SO₂) cm^{−1}; ¹H NMR (CDCl₃) δ 6.54 (d, J = 9.8 Hz, 1H, pyridone H-3), 7.33 (br s, 2H, SO₂NH₂ that exchanges with D₂O), 7.56 (dd, J = 9.8, 1.8 Hz, 1H, pyridone H-4), 7.60 (d, J = 8.5 Hz, 2H, phenyl H-2, H-6), 7.76 (t, J = 60.5 Hz, 1H, CHF₂), 7.83 (d, J = 8.5 Hz, 2H, phenyl H-3, H-5), 8.00 (d, J = 1.8 Hz, 1H, pyridone H-6); ¹³C NMR (CDCl₃ + DMSO-d₆) δ 85.9, 88.8, 102.8, 106.9, 121.1, 125.2, 125.7, 131.1, 132.8, 142.5, 143.3, 158.7. Anal. Calcd for C₁₄H₁₀F₂N₂O₃S•1/4H₂O: C, 51.14; H, 3.22; N, 8.52. Found: C, 51.05; H, 3.46; N, 8.32.

15. 5-Lipoxygenase inhibition assay: The ability of the test compounds listed in Table 1 to inhibit potato 5-LOX (Catalog No. 60401, Cayman Chemical, Ann Arbor, MI, USA) (IC₅₀ values, μ M) were determined using an enzyme immuno assay (EIA) kit (Catalog No. 760700, Cayman Chemical, Ann Arbor, MI, USA) according to our previously reported method. Chowdhury, M. A.; Abdellatif, K. R. A.; Dong, Y.; Das, D.; Suresh, M. R.; Knaus, E. E. *Bioorg. Med. Chem. Lett.* **2008**, 18, 6138.

16. Cyclooxygenase inhibition assays. The ability of the test compounds listed in Table 1 to inhibit ovine COX-1 and human recombinant COX-2 (IC₅₀ value, μ M) were determined using an enzyme immuno assay (EIA) kit (Catalog No. 560131, Cayman Chemical, Ann Arbor, MI, USA) according to our previously reported method. Rao, P. N. P.; Amini, M.; Li, H.; Habeeb, A.; Knaus, E. E. *J. Med. Chem.* **2003**, 46, 4872.

17. In vivo anti-inflammatory assay. The test compounds **9a–d** and the reference drugs celecoxib, ibuprofen and aspirin were evaluated using the in vivo carrageenan-induced rat foot paw edema model reported previously. Winter, C. A.; Risley, E. A.; Nuss, G. W. *Proc. Soc. Exp. Biol. Med.* **1962**, 111, 544.